Introduction into R
A Short Overview

Thomas Girke

December 8, 2012
Introduction

Look and Feel of the R Environment
R Library Depositories
Installation
Getting Around
Basic Syntax
Data Types and Subsetting
Basic Calculations
Reading and Writing External Data
Some Great R Functions
Graphics Utilities

Online Tutorial
Outline

Introduction

- Look and Feel of the R Environment
- R Library Depositories
- Installation
- Getting Around
- Basic Syntax
- Data Types and Subsetting
- Basic Calculations
- Reading and Writing External Data
- Some Great R Functions
- Graphics Utilities

Online Tutorial
What You’ll Get?

- R Gui: OS X
- Command-line R: Linux/OS X
- R Gui: Windows

Introduction into R

Introduction Look and Feel of the R Environment
RStudio: Alternative Working Environment for R

New integrated development environment (IDE) for R that works well for beginners and developers.
Why Using R

- Complete statistical package and programming language
- Efficient functions and data structures for data analysis
- Powerful graphics
- Access to fast growing number of analysis packages
- Most widely used language in bioinformatics
- Is standard for data mining and biostatistical analysis
- Technical advantages: free, open-source, available for all OSs

Books & Documentation

- simpleR - Using R for Introductory Statistics (Gentleman et al., 2005)
- UCR Manual (Thomas Girke)
Package Depositories

- **CRAN** (>3000 packages) general data analysis
- **BioConductor** (>500 packages) bioscience data analysis
- **Omegahat** (>30 packages) programming interfaces
Install R binary for your operating system from:

http://cran.at.r-project.org

Installation of CRAN Packages
> install.packages(c("pkg1", "pkg2"))
> install.packages("pkg.zip", repos=NULL)

Installation of BioConductor Packages
> source("http://www.bioconductor.org/biocLite.R")
> biocLite()
> biocLite(c("pkg1", "pkg2"))
Startup/Closing Behavior

Starting R

The R GUI versions under Windows and Mac OS X can be opened by double-clicking their icons. Alternatively, one can start it by typing 'R' in a terminal (default under Linux).

Startup/Closing Behavior

The R environment is controlled by hidden files in the startup directory: .RData, .Rhistory and .Rprofile (optional).

Closing R

> q()

Save workspace image? [y/n/c]:

Note

When responding with 'y', then the entire R workspace will be written to the .RData file which can become very large. Often it is sufficient to just save an analysis protocol in an R source file. This way one can quickly regenerate all data sets and objects.
Getting Around

Create an object with the assignment operator '<-' (or '=')
> object <- ...

List objects in current R session
> ls()

Return content of current working directory
> dir()

Return path of current working directory
> getwd()

Change current working directory
> setwd("/home/user")
General R command syntax

```R
> object <- function(arguments)
> object <- object[arguments]
```

Execute an R script

```R
> source("my_script.R")
```

Execute an R script from command-line

```bash
$ R CMD BATCH my_script.R
$ R --slave < my_script.R
```

Finding help

```R
> ?function
```

Load a library

```R
> library("my_library")
```

Summary of all functions within a library

```R
> library(help="my_library")
```

Load library manual (PDF file)

```R
> vignette()
```
Numeric data: 1, 2, 3
\[
> x <- c(1, 2, 3); x; is.numeric(x); as.character(x)
\]

Character data: "a", "b", "c"
\[
> x <- c("1", "2", "3"); x; is.character(x); as.numeric(x)
\]

Complex data: 1, b, 3
\[
> c(1, "b", 3)
\]

Logical data: TRUE, FALSE, TRUE
\[
> x <- 1:10 < 5; x
> !x
\]

Return indices for the 'TRUEs' in logical vector
\[
> which(x)
\]
Vectors (1D)

```r
> myVec <- 1:10; names(myVec) <- letters[1:10]
> myVec[1:5]; myVec[c(2,4,6,8)]; myVec[c("b", "d", "f")]
```

Factors (1D): vectors with grouping information

```r
> factor(c("dog", "cat", "mouse", "dog", "dog", "cat"))
```

Matrices (2D), Data Frames (2D) and Arrays (≥2D)

```r
> myMA <- matrix(1:30, 3, 10, byrow = T)
> myDF <- data.frame(Col1=1:10, Col2=10:1)
> myDF[1:4, ]; myDF[,c("Col2", "Col1", "Col1")]
```

Lists: containers for any object type

```r
> myL <- list(name="Fred", wife="Mary", no.children=3,
child.ages=c(4,7,9))
> myL[[4]][1:2]
```

Functions: piece of code

```r
> myfct <- function(arg1, arg2, ...) { function.body }
```
General Subsetting Rules

Subsetting by indices

> myVec <- 1:26; names(myVec) <- LETTERS
> myVec[1:4]

Subsetting by same length logical vectors

> myLog <- myVec > 10
> myVec[myLog]

Subsetting by field names

> myVec[c("B", "K", "M")]

Special case

> iris$Species
Basic Operators and Calculations

- **Comparison operators:** `==`, `!=`, `<`, `>`, `<=`, `>=

  ```r
  # Example:
  > 1 == 1
  ```

- **Logical operators:** AND: `&`, OR: `|`, NOT: `!

  ```r
  # Example:
  > x <- 1:10; y <- 10:1
  > x > y & x > 5
  ```

- **Calculations:**

  ```r
  # Example:
  > x + y; sum(x); mean(x), sd(x); sqrt(x)
  > apply(iris[,1:3], 1, mean)
  ```
Import Data into R

```r
> read.delim("myData.xls", sep="\t")
```

Export Data from R to File

```r
> write.table(myframe, file="myfile.xls", sep="\t", quote=F)
```
Some Great R Functions

The `unique()` function to make vector entries unique
> unique(iris$Sepal.Length); length(unique(iris$Sepal.Length))

The `table()` function counts the occurrences of entries
> table(iris$Species)

The `aggregate()` function computes statistics of data aggregates
> aggregate(iris[,1:4], by=list(iris$Species), FUN=mean, na.rm=T)

The `%in%` function returns the intersect between two vectors
> month.name[month.name %in% c("May", "July")]

The `merge()` function joins data frames based on a common key column
> merge(frame1, frame2, by.x=1, by.y=1, all = TRUE)
Unique objects: All = 25; S1 = 18; S2 = 16; S3 = 20; S4 = 22; S5 = 18
Some Graphics Commands

Dot plots
> plot(1:10)
> plot(iris[,1:4])

Barplot
> barplot(1:10)

Help with plots
> ?plot; ?par

Demo Graphics Utilities
Outline

Introduction
Look and Feel of the R Environment
R Library Depositories
Installation
Getting Around
Basic Syntax
Data Types and Subsetting
Basic Calculations
Reading and Writing External Data
Some Great R Functions
Graphics Utilities

Online Tutorial
More Details and Exercises

- Continue in R Manual