Bioinformatics Workshop - NM-AIST

Day 2
Introduction to R

Thomas Girke

July 24, 2012
Introduction
 Look and Feel of the R Environment
 R Library Depositories
 Installation
 Getting Around
 Basic Syntax
 Data Types and Subsetting
 Basic Calculations
 Reading and Writing External Data
 Some Great R Functions
 Graphics Utilities

Online Tutorial
Outline

Introduction

Look and Feel of the R Environment
R Library Depositories
Installation
Getting Around
Basic Syntax
Data Types and Subsetting
Basic Calculations
Reading and Writing External Data
Some Great R Functions
Graphics Utilities

Online Tutorial
What You’ll Get?

R Gui: OS X

Bioinformatics Workshop - NM-AIST

Command-line R: Linux/OS X

R Gui: Windows

Introduction

Look and Feel of the R Environment
RStudio: Alternative Working Environment for R

New integrated development environment (IDE) for R that works well for beginners and developers.
Why Using R

- Complete statistical package and programming language
- Efficient functions and data structures for data analysis
- Powerful graphics
- Access to fast growing number of analysis packages
- Most widely used language in bioinformatics
- Is standard for data mining and biostatistical analysis
- Technical advantages: free, open-source, available for all OSs

Books & Documentation

- **simpleR - Using R for Introductory Statistics** (Gentleman et al., 2005)
- **Bioinformatics and Computational Biology Solutions Using R and Bioconductor** (John Verzani, 2004)
- **UCR Manual** (Thomas Girke)
Package Depositories

- **CRAN** (>3000 packages) general data analysis
- **BioConductor** (>500 packages) bioscience data analysis
- **Omegahat** (>30 packages) programming interfaces
Install R binary for your operating system from:

http://cran.at.r-project.org

Installation of CRAN Packages

> install.packages(c("pkg1", "pkg2"))
> install.packages("pkg.zip", repos=NULL)

Installation of BioConductor Packages

> source("http://www.bioconductor.org/biocLite.R")
> biocLite()
> biocLite(c("pkg1", "pkg2"))
Starting R

The R GUI versions under Windows and Mac OS X can be opened by double-clicking their icons. Alternatively, one can start it by typing 'R' in a terminal (default under Linux).

Startup/Closing Behavior

The R environment is controlled by hidden files in the startup directory: .RData, .Rhistory and .Rprofile (optional).

```r
## Closing R
> q()
Save workspace image? [y/n/c]:
```

Note

When responding with 'y', then the entire R workspace will be written to the .RData file which can become very large. Often it is sufficient to just save an analysis protocol in an R source file. This way one can quickly regenerate all data sets and objects.
Create an object with the assignment operator ' <- ' (or ' = ')

> object <- ...

List objects in current R session

> ls()

Return content of current working directory

> dir()

Return path of current working directory

> getwd()

Change current working directory

> setwd("/home/user")
Basic R Syntax

General R command syntax

```r
> object <- function(arguments)
> object <- object[arguments]
```

Execute an R script

```r
> source("my_script.R")
```

Execute an R script from command-line

```
$ R CMD BATCH my_script.R
$ R --slave < my_script.R
```

Finding help

```r
> ?function
```

Load a library

```r
> library("my_library")
```

Summary of all functions within a library

```r
> library(help="my_library")
```

Load library manual (PDF file)

```r
> vignette()
```
Data Types

Numeric data: 1, 2, 3

```r
> x <- c(1, 2, 3); x; is.numeric(x); as.character(x)
```

Character data: "a", "b", "c"

```r
> x <- c("1", "2", "3"); x; is.character(x); as.numeric(x)
```

Complex data: 1, b, 3

```r
> c(1, "b", 3)
```

Logical data: TRUE, FALSE, TRUE

```r
> x <- 1:10 < 5; x
> !x
```

Return indices for the 'TRUEs' in logical vector

```r
> which(x)
```
Data Objects

Vectors (1D)
> myVec <- 1:10; names(myVec) <- letters[1:10]
> myVec[1:5]; myVec[c(2,4,6,8)]; myVec[c("b", "d", "f")]

Factors (1D): vectors with grouping information
> factor(c("dog", "cat", "mouse", "dog", "dog", "cat"))

Matrices (2D), Data Frames (2D) and Arrays (≥2D)
> myMA <- matrix(1:30, 3, 10, byrow = T)
> myDF <- data.frame(Col1=1:10, Col2=10:1)
> myDF[1:4,]; myDF[,c("Col2", "Col1", "Col1")]

Lists: containers for any object type
> myL <- list(name="Fred", wife="Mary", no.children=3, child.ages=c(4,7,9))
> myL[[4]][1:2]

Functions: piece of code
> myfct <- function(arg1, arg2, ...) { function_body }
Subsetting by indices

```r
> myVec <- 1:26; names(myVec) <- LETTERS
> myVec[1:4]
```

Subsetting by same length logical vectors

```r
> myLog <- myVec > 10
> myVec[myLog]
```

Subsetting by field names

```r
> myVec[c("B", "K", "M")]
```

Special case

```r
> iris$Species
```
Basic Operators and Calculations

- **Comparison operators**: `==`, `!=`, `<`, `>`, `<=`, `>=

 Example:
 > 1==1

- **Logical operators**: AND: `&`, OR: `|`, NOT: `!

 Example:
 > x <- 1:10; y <- 10:1
 > x > y & x > 5

- **Calculations**:

 Example:
 > x + y; sum(x); mean(x), sd(x); sqrt(x)
 > apply(iris[,1:3], 1, mean)
Import Data into R

```r
> read.delim("myData.xls", sep="\t")
```

Export Data from R to File

```r
> write.table(myframe, file="myfile.xls", sep="\t", quote=F)
```
Some Great R Functions

The unique() function to make vector entries unique
> unique(iris$Sepal.Length); length(unique(iris$Sepal.Length))

The table() function counts the occurrences of entries
> table(iris$Species)

The aggregate() function computes statistics of data aggregates
> aggregate(iris[,1:4], by=list(iris$Species), FUN=mean, na.rm=T)

The %in% function returns the intersect between two vectors
> month.name[month.name %in% c("May", "July")]

The merge() function joins data frames based on a common key column
> merge(frame1, frame2, by.x=1, by.y=1, all = TRUE)
Unique objects: All = 25; S1 = 18; S2 = 16; S3 = 20; S4 = 22; S5 = 18
Dot plots
> plot(1:10)
> plot(iris[,1:4])

Barplot
> barplot(1:10)

Help with plots
> ?plot; ?par

Demo Graphics Utilities
Outline

Introduction
 Look and Feel of the R Environment
 R Library Depositories
 Installation
 Getting Around
 Basic Syntax
 Data Types and Subsetting
 Basic Calculations
 Reading and Writing External Data
 Some Great R Functions
 Graphics Utilities

Online Tutorial
More Details and Exercises

- Continue in R Manual